If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2-140x+320=0
a = -6; b = -140; c = +320;
Δ = b2-4ac
Δ = -1402-4·(-6)·320
Δ = 27280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27280}=\sqrt{16*1705}=\sqrt{16}*\sqrt{1705}=4\sqrt{1705}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1705}}{2*-6}=\frac{140-4\sqrt{1705}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1705}}{2*-6}=\frac{140+4\sqrt{1705}}{-12} $
| 320-104x-6x^2=0 | | 6/7=5/6x | | -6x2x=40 | | 2x+4x+5x+3=x | | (4-v)(2v+5)=0 | | a=0=a=-a | | 17+3x=26 | | 4x-7=-8x+15 | | 1/2x=1/4x+5/2 | | 3(x-2)+x=5(×-3)+9 | | 9x+13=4x-2 | | (11/6)=x+(7/9) | | 9(x-3)=2(x-5)-3 | | 32x=52(x-2) | | 8x^2-3x-38=0 | | (3/x)-2=0 | | 4x+15=3x+13 | | 7(3/x)=0 | | 1/3x^2+7/2^x=11/6 | | 598-2m)=100 | | (5z-1)(2+z)=0 | | 4(3x-2)=13× | | 48-16=4(x-9) | | -7+x/2=4 | | 5+9x=-4 | | 3(-1)-4y=-7 | | 3×(-1)-4y=-7 | | 97x=100x-3 | | (6+3y/2)+y=23 | | y/4-14=15 | | x-0.18x=65.6 | | -16(3-2q)=439 |